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Abstract
We study ’t Hooft’s integral equation determining the meson masses Mn in
multicolor QCD2. In this paper we concentrate on developing an analytic
method, and restrict our attention to the special case of quark masses
m1 = m2 = g/

√
π . Among our results is the systematic large-n expansion,

and exact sum rules for Mn. Although we explicitly discuss only the special
case, the method applies to the general case of quark masses, and we announce
some preliminary results for m1 = m2 (equations (6.1) and (6.3)).

PACS numbers: 11.10Kk, 11.15Pg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As was discovered by G ’t Hooft in 1974 [1], the mass spectrum of mesons in multi-color QCD
in two dimensions admits exact solution, because in this model the mesons are essentially the
two-body constructs, and their masses are exactly determined by the Bethe–Salpeter equation.
For the mesons built from two quarks of bare (Lagrangian) masses m1 and m2, the Bethe–
Salpeter equation reduces to the singular integral equation

2π2λϕ(x) =
[
α1

x
+

α2

1 − x

]
ϕ(x) − −

∫ 1

0
dy

ϕ(y)

(y − x)2
, (1.1)

where

α1 = πm2
1

g2
− 1, α2 = πm2

2

g2
− 1, (1.2)

with g being the ’t Hooft coupling constant (which in 2D has the dimension of mass). The
function ϕ(x) has to satisfy the boundary conditions

ϕ(0) = ϕ(1) = 0, (1.3)
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whence equation (1.1) defines the spectral problem for the parameter λ; the eigenvalues
λn, n = 0, 1, 2, . . . are discrete, and determine the meson masses

M2
n = 2πg2λn. (1.4)

In principle, the problem can be solved numerically, to any degree of accuracy, and over
the years a number of approaches have been developed to that end [1–5]. However, we believe
that equation (1.1) deserves further study from an analytical standpoint. In our opinion, the
most interesting problem with respect to equation (1.1) is understanding the analytic properties
of the eigenvalues λn as the functions of complex α1 and α2. Without significant analytic input,
straightforward numerical approaches seem to be unsuitable to addressing this problem. At
the same time, the neat form of equation (1.1) suggests that perhaps some analytic information
can be extracted.

In this paper we report new results about the spectrum {λn} in the special case4

α1 = α2 = 0. (1.5)

Among our results is the systematic semiclassical (large-n) expansion of the eigenvalues,

2λn = n +
3

4
− 2

3π6
(
n + 3

4

)3 +
2(−1)n+1

π4
(
n + 3

4

)2

{
1 − 4 log

[
π eγE− 1

2
(
n + 3

4

)]
π2

(
n + 3

4

) }
+ O

(
log2(n)

n4

)
.

(1.6)

Here γE is the Euler constant and we display just three leading terms, but in principle any
number of terms can be produced via our technique (the next four terms can be deduced from
(4.25), (4.27), (4.28) and equations (A.3), (A.4) in appendix A). Note the unusual logarithmic
factors in the third and higher terms, which make this expansion look rather different from the
standard WKB expansion in the Schrödinger problem. In addition, our approach allows for
analytic evaluation of the spectral sums

G(s)
+ =

∞∑
m=0

1

λs
2m

, G
(s)
− =

∞∑
m=0

1

λs
2m+1

(1.7)

with integer s = 2, 3, 4, . . . . (The sums here are over even or odd eigenvalues. The
corresponding eigenstates are even or odd with respect to obvious x → 1 − x symmetry of
(1.1).) For low s we have, explicitly

G(2)
+ = 7ζ(3), G

(2)
− = 2,

G(3)
+ = − 4

3π2 + 28ζ(3), G
(3)
− = − 8

3 + 4
9π2,

G(4)
+ = −2π2 + 42ζ(3) − 7

3π2ζ(3) + 49
2 ζ 2(3) + 31

2 ζ(5),

G
(4)
− = 11

3 − 7
9π2 + 7

6π2ζ(3) − 31
4 ζ(5).

(1.8)

Again, in principle analytic expressions for any given s can be obtained, but for larger s the
calculations become increasingly involved. At the moment we have these numbers up to
s = 13, but only those with s = 5, . . . , 8 have sufficiently compact form to be presented in
appendix A. Put together, the large-n expansion (1.6) and the sum rules (1.7) provide good
control over the entire spectrum: the large-m parts of the sums (1.7) can be approximated by
the asymptotic expansions (1.6), thus providing equations for the lower eigenvalues.

We regard this work as preparatory for studying the spectrum of (1.1) with arbitrary
α1, α2, with the aim of understanding analytic properties of the eigenvalues at complex values
of these parameters. We concentrate here on developing the technique, and the case (1.5) is

4 Note that it is not the case of massless quarks. In particular, the chiral symmetry is broken.
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convenient for testing its efficiency. Besides, many details have a particularly neat form in
this case. But for the most part, our technique admits more or less straightforward extension
to the general case, which will be the next stage of this project. The method also seems to be
suitable for analysis of a large class of Bethe–Salpeter equations of the type of (1.1) which
emerge in many 2D field theories with confining interactions5.

The paper is organized as follows. In section 2 we discuss general properties of
equation (1.1). In particular we relate its solutions to solutions of a certain functional equation
(see equation (2.6)) of the type of Baxter’s T − Q equation, with special analyticity. In
section 3 we develop λ-series expansion of the solutions of this equation. This expansion
generates analytic expressions for the spectral sums (1.7). Asymptotic expansion at λ → ∞
is developed in section 4. It results in the large-n expansion of the eigenvalues λn. In
section 5 we test these results against the numerical solution of (1.1).

While this paper was in preparation, we made some progress in studying the more general
case of (1.1), with nonzero but equal values of the parameters

α1 = α2 = α. (1.9)

We intend to devote a separate paper to discussing this more general case, where indeed a
very interesting analytic structure of λn(α) emerges. But we could not resist the temptation to
announce some results here, which are presented in section 6.

2. The functional equation

We find it useful to recast equation (1.1) into a somewhat different form, via the integral
transformation

ϕ(x) =
∫ ∞

−∞

dν

2π
	(ν)

(
x

1 − x

) iν
2

, 	(ν) =
∫ 1

0

dx

2x(1 − x)
ϕ(x)

(
x

1 − x

)− iν
2

, (2.1)

which is just a Fourier transform with respect to the variable 1
2 log

(
x

1−x

)
(this transformation

was previously used in [8]). The ν-space form of (1.1) is

ν coth

(
πν

2

)
	(ν) − λ

∫ ∞

−∞
dν ′S(ν − ν ′)	(ν ′) = 0, (2.2)

where the kernel

S(ν) = πν

2 sinh
(

πν
2

) (2.3)

in the right-hand side is regular at all real ν. The solution 	(ν) must decay at |ν| → ∞
(for the norm ‖ϕ‖2 = ∫ 1

0 dx|ϕ(x)|2 to be finite), and it must be a smooth function of ν (for
the function ϕ(x) in (1.1) to satisfy the boundary conditions (1.3)). The spectrum {λn} is
determined by the existence of solutions which satisfy these conditions. In fact, both these
conditions, once satisfied, are satisfied with substantial redundancy.

Equation (2.2) dictates that any smooth solution is in fact analytic. Moreover, it is
possible to show that the solutions 	(ν) are meromorphic functions of ν, with the poles at
ν = ±(2k − 1)i, k ∈ Z, of the order k ∈ N. In particular, the function Q(ν) defined as

Q(ν) = ν cosh

(
πν

2

)
	(ν) (2.4)

5 This situation is typical when one takes a field theory with exact vacuum degeneracy and adds a small interaction
which lifts the degeneracy, giving rise to the confining force between the kinks. The simplest example is the Ising
field theory, in the low-temperature regime, in the presence of a weak magnetic field [6, 7]. Unlike the multicolor
QCD, where equation (1.1) is exact in the limit Nc = ∞, in that case the associated Bethe–Salpeter equation is
only an approximation, expected to be valid when the magnetic field is sufficiently small, but it seems to produce
meaningful insight into the mass spectrum even at a large magnetic field.
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is analytic in the strip |Im ν| � 2, grows slower then any exponential of ν at infinity, and turns
to zero at ν = 0,±2i, i.e.

Q(0) = Q(±2i) = 0. (2.5)

Under these conditions the integral operator in the right-hand side can be inverted in terms
of a finite difference operator (which is derived by standard manipulations with shifts of the
integration contour), leading to the functional equation

Q(ν + 2i) + Q(ν − 2i) − 2Q(ν) = −4πλν−1 tanh

(
πν

2

)
Q(ν). (2.6)

Equation (2.6) is the basis of our analysis below.
A quick look at the asymptotic form of (2.6) at Re ν → ∞ reveals that its solutions

generally behave as ekνf (ν), with integer k, and f (ν) bounded by any exponential. Obviously,
any positive k would violate the asymptotic condition for 	(ν). Thus, we are interested in the
solutions which are bounded as

Q(ν) = O(eε|ν|) as |Re ν| → ∞, (2.7)

with any ε. Note that this condition implies that the function 	(ν) in fact decays exponentially
in this limit.

A solution of (2.6) with the desired analytic and asymptotic properties exists only at
specific values of λ, which determine the eigenvalues of (2.2). However, if the conditions (2.5)
are relaxed, the solutions Q(ν|λ) exist at any λ. For generic λ, the associated function 	(ν|λ)

no longer satisfies the integral equation (2.2). Instead, it solves the related inhomogeneous
equation

ν coth

(
πν

2

)
	(ν|λ) − λ −

∫ ∞

−∞
dν ′S(ν − ν ′)	(ν ′|λ) = F(ν|λ), (2.8)

where

F(ν|λ) = q+(λ)ν + q−(λ)

sinh( πν
2 )

, (2.9)

with the coefficients q+(λ) and q−(λ) related to the values Q(0|λ) and Q(±2i|λ) in a linear
manner (note that in view of the functional equation (2.6), only two of these values are
independent). Since now in general Q(0|λ) �= 0, the integrand in the lhs involves a first order
pole at ν ′ = 0, and the integral is understood as its principal value. It is possible to show that,
given the coefficients q±, the solution of (2.8) is unique. These coefficients can be chosen at
will, and therefore equation (2.8) generates a two-dimensional space of functions 	(ν|λ). It
is natural to choose the basis in accord with the obvious ν → −ν symmetry of the problem.
We thus define symmetric and antisymmetric basic functions,

	±(−ν|λ) = ±	±(ν|λ), (2.10)

which solve equation (2.8) with F(ν|λ) in the rhs taken to be

F+(ν) = ν

sinh
(

πν
2

) and F−(ν) = 1

sinh
(

πν
2

) , (2.11)

respectively.
At the spectral points λ = λn the original equation (2.2) is to be recovered. That means

that at certain values of λ the basic functions 	±(ν|λ) diverge. More precisely, equation (2.8)
can be rewritten in the form of an inhomogeneous Fredholm integral equation of the second

4
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kind (see appendix B for details) and it follows from the resolvent formalism that 	±(ν|λ) are
meromorphic functions of λ, with only poles at the eigenvalues of (2.2)

	+(ν|λ) =
∞∑

m=0

c2m	2m(ν)

λ − λ2m

, 	−(ν|λ) =
∞∑

m=0

c2m+1	2m+1(ν)

λ − λ2m+1
, (2.12)

where, as we have mentioned in the introduction, λ2m and λ2m+1,m = 0, 1, 2, . . ., refer to the
eigenvalues of (2.2) in the even and odd sectors, respectively, and 	2m(ν) and 	2m+1(ν) are
associated eigenfunctions6.

It is useful to note that the functions 	+(ν|λ) and 	−(ν|λ) are related to the ‘quark form
factors’ of the vector current Jμ = ψ̄γμψ and the scalar density S = ψ̄ψ , respectively, with
the parameter λ (more precisely 2πg2λ) interpreted as q2, the square of the total 2-momentum
(see [9, 10], where inhomogeneous integral equations equivalent to (2.8), (2.11) appear in this
connection). Therefore the structure (2.12) is well expected, and the coefficients cn in (2.12)
are related to the matrix elements

〈0|Jμ(0)|M2m, q〉 = iεμνq
ν
√

Ncπ
3
2 c2m,

〈0|S(0)|M2m+1, q〉 = 2πg
√

Ncc2m+1,
(2.13)

where |Mn, q〉 stands for the nth meson state with 2-momentum q. Let us mention here the
neat expressions for the current–current correlation function in terms of 	+(ν|λ),

〈Jμ(q)Jν(−q)〉 = iNc

π

(
qμqν

q2
− gμν

)
[1 − 	+(0|λ)]. (2.14)

Having in mind this analyticity in λ, our strategy in solving the problem will be as follows.
Starting with equation (2.6), we will be looking for two solutions, Q+(ν|λ) and Q−(ν|λ), of
the functional equation (2.6), analytic in the strip |Im ν| � 2, and growing slower than any
exponential at |Re ν| → ∞. We will assume that

Q±(−ν|λ) = ∓Q±(ν|λ), (2.15)

and fix the normalizations by the conditions

Q+(2i|λ) = −Q+(−2i|λ) = 2i, Q−(0|λ) = 1. (2.16)

Then the functions 	±(ν|λ) related to Q±(ν|λ) as in (2.4) have appropriate symmetry (2.10),
and solve equation (2.8) precisely with the right-hand sides (2.11), as one can readily verify.
In fact, the remarkably simple formula

∂λ log D±(λ) = 2i∂ν log Q∓(ν|λ)|ν=i (2.17)

relates the logarithmic derivatives of Q∓ at ν = i to suitably defined spectral determinants

D+(λ) =
∞∏

m=0

(
1 − λ

λ2m

)
e

λ
λ2m , D−(λ) = e2λ

∞∏
m=0

(
1 − λ

λ2m+1

)
e

λ
λ2m+1 . (2.18)

(To be precise, somewhat more complicated expressions, equations (B.20), follow directly
from the integral equation (2.8). See appendix B, where we explain the status of
equation (2.17).) Note that this relation is insensitive to the normalization conditions assumed
for Q±(ν|λ). In what follows, we develop two different expansions for such solutions Q±(ν|λ).
One is just the power series in λ, and the other is the asymptotic expansion around the essential
singularity λ = ∞. Equation (2.17) translates the former expansions into the sum rules (1.7),
while the latter ones lead to the large-n expansion (1.6).

6 Here and below 	n(ν) stands for normalized eigenfunctions, i.e. we assume that
∫ 1

0 dx|ϕn(x)|2 = 1 for the
associated ϕn(x), equation (2.1).
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Before turning to the details, let us make the following remark. The functional
equation (2.6) has the form of the famous T − Q relation of Baxter, and many general
statements can be adopted to our case. In particular, it is easy to show that the so-called
quantum Wronskian built from the two solutions Q±(ν|λ) is a constant,

Q+(ν + i|λ)Q−(ν − i|λ) − Q+(ν − i|λ)Q−(ν + i|λ) = 2i. (2.19)

The fact that this combination does not depend on ν follows from the functional equation (2.6),
and the asymptotic conditions at |Re ν| → ∞. The particular value 2i in the rhs reflects the
special normalization (2.16); with different normalization it would be a different (generally λ-
dependent) constant. This equation, combined with (2.17), allows one to establish some useful
relations. It follows from (2.17) that Q+(i|λ) turns to zero at the odd spectral values λ = λ2m+1

(likewise, Q−(i|λ) does the same at the even values λ2m). But the identity Q+(i|λ)Q−(i|λ) = i
(elementary consequence of (2.19)) shows that λ2m+1 exhaust all zeros of Q+(i|λ) viewed as
the function of λ. In other words, Q+(i|λ) must be proportional to D−(λ)/D+(λ), up to a
factor which is an entire function of λ with no zeros, i.e. in our case the factor of the form
exp(a + bλ). More careful analysis (in the following section) allows one to fix this ambiguity
completely. Let us present here the result in the form

Q+(i|λ)

Q+(2i|λ)
= 1

2

D−(λ)

D+(λ)
,

Q−(i|λ)

Q−(0|λ)
= 2i

D+(λ)

D−(λ)
, (2.20)

insensitive to normalizations of Q±(ν|λ).

3. Expansion in powers of λ

In principle, one can generate the expansion in λ just by iterating the integral equation (2.8),
with the right-hand side taken in one of the forms (2.11) (see equations (B.14) in
appendix B). This leads to the convergent series

Q±(ν|λ) =
∞∑

s=0

Q
(s)
± (ν)λs, (3.1)

with the coefficients given by s-fold integrals involving the kernel S(ν). Direct evaluation
of these integrals is difficult, and therefore we take another approach based on the functional
equation (2.6). We look for the solution of (2.6) in the form of the power series (3.1), with
the coefficients Q

(s)
± (ν) having the symmetry (2.15), analytic in the strip |Im ν| � 2, and

growing slower than any exponential at |Re ν| → ∞. It is clear upfront that at each order
these conditions fix the coefficients uniquely (after all, it is just a somewhat indirect way
of evaluating the integrals appearing in the iterative solution of (2.8)). But the solution for
Q

(s)
± (ν) obtained in this way involves polynomials of ν of growing degree, and the expressions

quickly become cumbersome. The following observation greatly facilitates the calculations.
Note that the factor

z ≡ 2πλ tanh

(
πν

2

)
(3.2)

in the rhs of this equation, is insensitive to the shifts ν → ν ± 2i, and if no attention is paid to
the analytic properties, it can be regarded as constant. Then equation (2.6), written as

Q(ν + 2i) + Q(ν − 2i) − 2Q(ν) = −2zν−1Q(ν), (3.3)

is recognizable as one of the recursion relations satisfied by confluent hypergeometric functions
[13]. Specifically, the functions νM

(
1 + iν

2 , 2,−iz
)

and 
(
1 + iν

2

)
U

(
1 + iν

2 , 2,−iz
)

are known

6
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to satisfy (3.3) (see, e.g. [13], equations (13.4.1), (13.4.15)). Here the conventional notations
M(a, c, x) and U(a, c, x) for two canonical solutions of the confluent hypergeometric equation
are used. Of course, by themselves these functions do not provide a solution to our problem,
since they have wrong analyticity in ν. For one, the second of these functions has a logarithmic
singularity at z = 0, which in view of (3.2) produces unpleasant branching points in the ν-
plane. This problem is easy to cure by observing that the logarithmic term by itself satisfies
equation (3.3), and subtracting it produces another solution which is now a single-valued
function of ν. Thus, we found it convenient to use the combinations

M+(ν, z) = ν e
iz
2 M

(
1 +

iν

2
, 2,−iz

)
, (3.4)

M−(ν, z) = −iz e
iz
2 

(
1 +

iν

2

)
U

(
1 +

iν

2
, 2,−iz

)
− 1

2

[
z log

(
− i

4
z eγE

)
+ iπ2λ

]
M+(ν, z),

(3.5)

where the coefficients e
iz
2 and the extra constant in the brackets in (3.5) are chosen to ensure

the symmetry

M±(−ν,−z) = ∓M±(ν, z), (3.6)

in accord with the obvious symmetry of equation (3.3). Both (3.4) and (3.5) are entire functions
of z, in particular both can be represented by convergent expansions in the powers of z

M+(ν, z) = ν e
iz
2

∞∑
s=0

(
1 + iν

2

)
s

(s + 1)!s!
(−iz)s,

M−(ν, z) = 1

2

[
e

iz
2 �(ν, z) + e− iz

2 �(−ν,−z)
]
,

(3.7)

where

�(ν, z) = 1 +
∞∑

s=1

(
iν
2

)
s

s!(s − 1)!

[
ψ

(
s +

iν

2

)
− ψ(s) − ψ(s + 1) + ψ

(
1

2

)]
(−iz)s. (3.8)

These expansions make explicit a more serious problem. In view of (3.2), each term of this
expansion produces poles at ν = ±i, of growing order, and thus both (3.4) and (3.5), viewed
as the functions of ν at fixed λ, have essential singularities at these points, whereas we need
solutions of (2.6) analytic in the strip |Im ν| � 2. We are thus compelled to look for the
solutions in the form

Q±(ν|λ) = A±(z, λ)M±(ν, z) + B±(z, λ)zM∓(ν, z), (3.9)

where the coefficients, entire functions of z2, are to be adjusted to compensate for the above
singularity at z = ∞. So far we were unable to find the closed form solution of this analytic
problem. But it is easy to generate the solution as an expansion in the powers of λ. In view
of the above analyticity, we assume that the coefficients can be expanded in double series in λ

and z2. Regarding them as the functions of ν and λ (through the relation (3.2)), this expansion
has the form of the power series

A±(z, λ) =
∞∑

s=0

a
(s)
± (τ )λs, B±(z, λ) =

∞∑
s=0

b
(s)
± (τ )λs (3.10)

7
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with a
(s)
± (τ ) and b

(s)
± (τ ) being polynomials in τ ≡ (

z
4λ

)2 = π2

4 tanh2
(

πν
2

)
, of the highest

degree [s/2]. The numerical coefficients in these polynomials are to be adjusted in such a way
as to compensate for all the pole terms generated by the expansions of the functions M±(ν, z)

in (3.9), order by order in λ. The remaining constant terms are then fixed by the normalization
conditions (2.16) which demand that A±(0, λ) = 1. Clearly, this linear problem at each order
has a unique solution. We have calculated explicitly the polynomials a

(s)
± (τ ), b

(s)
± (τ ) up to

s = 13. Let us present here the first few of them, just to give the flavor of it

a
(2)
+ = τ, a

(3)
+ = 64

9 τ, a
(4)
+ = 1

4τ(50 + 21ζ(3) − 5τ),

b
(0)
+ = 1

2 , b
(1)
− = 4

3 , b
(2)
− = 1

4 (6 + 7ζ(3) − τ),
(3.11)

and

a
(2)
− = −τ, a

(3)
− = 8

9τ, a
(4)
− = 1

12τ(21ζ(3) − 14 + 3τ),

b
(0)
− = 0, b

(1)
− = 4, b

(2)
− = 7

2ζ(3) − 5 − τ.
(3.12)

Equation (2.17) makes it straightforward to convert the λ-expansions of Q±(ν|λ) into the
expansions of the spectral determinants (2.18),

log D±(λ) = (1 ∓ 1)λ −
∞∑

s=2

s−1G
(s)
± λs, (3.13)

where the coefficients give explicitly the spectral sums (1.7). For the few lowest s the result of
this calculation was already displayed in (1.8), but we present many more in appendix A. With
many G(±)

s known, the sum rules (1.7) become a useful tool in determining the eigenvalues
λn, especially so when combined with the large-n asymptotic expansions, which we derive in
the following section.

4. Asymptotic expansion at λ → ∞

To develop the large-λ expansions of the functions Q±(ν|λ) we start by constructing a formal
solution of the functional equation (2.6), of the following structure:

S(ν|λ) = (−λ)−
iν
2

∞∑
k=0

Sk(ν)λ−k. (4.1)

It is impossible to satisfy all the analytic conditions required for the functions Q±(ν|λ) within
this ansatz, but we would like to get as close to the desired analyticity as possible. In particular,
we demand that the coefficients Sk(ν) are meromorphic functions of ν, growing slower then
any exponential at |Re ν| → ∞. The form (4.1) is obviously designed to serve the case
of negative real λ, if we choose the principal branch of (−λ)−

iν
2 (other branches exhibit

unacceptable exponential growth at |Re ν| → ∞).
Plugging this expansion into (2.6) generates a sequence of recurrent functional equations

for the coefficient functions Sk(ν). In the zero order we have

S0(ν + 2i) = 4π

ν
tanh

(πν

2

)
S0(ν). (4.2)

8
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The solution of this equation, analytic in the strip |Im ν| � 2 and bounded at |Re ν| → ∞, is
unique up to a normalization. It can be written in an explicit form7

S0(ν) = (2π)−
1
2 − iν

2
G

(
2 + iν

2

)
G

(
1
2 − iν

2

)
G

(
1 − iν

2

)
G

(
3
2 + iν

2

)(
S0(i) = 1

)
(4.3)

in terms of the Barnes G-function (see, e.g. [14])

G(x + 1) = (2π)
x
2 e− x(x+1)

2 − γE
2 x2

∞∏
n=1

[(
1 +

x

n

)n

e−x+ x2

2n

]
. (4.4)

At higher orders in λ−1 equation (2.6) leads to the recurrent relations of the form

σk(ν + 2i) − σk(ν) = ρk(ν) (4.5)

for the ratios σk(ν) = Sk(ν)/S0(ν), with ρk(ν) being certain expressions involving σk′(ν) from
the lower orders k′ = k − 1, k − 2. While beyond the leading order no solutions analytic in
the strip |Im ν| � 2 exist, it is possible to find solutions analytic in that strip except for the
points ν = 0,±2i, where the poles of growing order appear. The result of this calculation is
summarized by the formula

S(ν|λ) = R(z, λ)Û(ν, z), (4.6)

where Û (ν, z) stands for the formal asymptotic series

Û (ν, z) = (−λ)−
iν
2 S0(ν)

∞∑
k=0

(
1 + iν

2

)
k

(
iν
2

)
k

k!
(iz)−k, (4.7)

and z is the same combination (3.2), insensitive to the shifts ν → ν ± 2i. The fact that (4.7)
satisfies (2.6) can be verified directly, but it is clear upfront from the following observation;
the series appearing in (4.7), when multiplied by 

(
1 + iν

2

)
(−iz)−1− iν

2 , coincides with the
asymptotic expansion of the function 

(
1 + iν

2

)
U(1 + iν

2 , 2,−iz), which satisfies (2.6). In
writing (4.7) we simply replaced the overall factor 

(
1 + iν

2

)
(−iz)−1− iν

2 by the much more
analytically attractive (−λ)−

iν
2 S0(ν). The factor R(z, λ) in (4.6) represents the ambiguities in

the solutions of (4.5); it is to be understood as a formal series in the powers of z−1 and λ−1, or
equivalently as a series in λ−1 with the coefficients being polynomials in the variable

c ≡ iπ coth

(
πν

2

)
. (4.8)

The asymptotic expansions of the functions Q±(ν|λ) can be built from the formal solution
(4.7) in much the same way as the λ-expansions were constructed from the basic functions

7 The function ψ0(ν) = 1
ν

tanh
(

πν
2

)
S0(ν), with S0(ν) as in (4.3), provides an exact solution to the ‘scattering’

problem

−ϕ(x) = −
∫ ∞

0

ϕ(y)

(x − y)2
dy

associated with (1.1), see [11]. Namely,

ϕ(x) =
∫ ∞

−∞
dνx− iν

2 ψ0(ν).

Using the known asymptotic behavior of the Barnes G-function [14], it is straightforward to derive the ‘scattering
phase’ in

ϕ(x) → e
3π i
8 e−ix + e− 3π i

8 eix as x → ∞,

from which the constant term 3
4 in equation (1.6) (already conjectured in [1]) follows. Our analysis in this section

goes beyond this simple approximation.

9
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(3.4), (3.5) in the previous section. Having in mind the symmetry (2.15), we look for Q±(ν|λ)

in the form8

Q±(ν|λ)  R±(z, λ)Û(ν|z) ∓ R±(−z, λ)Û(−ν| − z). (4.9)

The coefficients R±(z, λ) are to be adjusted to fix the analytic problems present in Û (ν|z) and
Û (−ν| − z). One of these problems was already mentioned above. The series (4.7) explicitly
exhibits at each order in λ−1 poles at ν = 0,±2i, of the growing order. This problem can be
fixed order by order in λ−1, with R±(z, λ) taken in the form

R±(z, λ) ∝ 1 +
∞∑

k=1

R
(k)
± (c, L)λ−k, (4.10)

with R
(k)
± (c, L), polynomials in the cotangent (4.8), adjusted to cancel these poles. Because

of the factor (−λ)−
iν
2 , the Laurent expansions of (4.7) around the poles generate logarithms of

−λ. As a result, the coefficients R
(k)
± in (4.10) emerging in this calculation turn out to be also

polynomials in the variable

L = log (−2πλ) + γE. (4.11)

This is a novel feature of the large-λ expansion, which ultimately leads to the logarithmic
factors in the expansions (1.6). As expected, the solution of this pole-cancellation problem
at each order in λ−1 turns out to be essentially unique, i.e. unique up to terms which
can be absorbed into the overall normalization of Q±(ν|λ). With the relations (2.20), the
normalization conditions (2.16) imply the following general form of the coefficients R±(z, λ):

R±(z, λ) = (−λ)−
1
2 i

1∓1
2

[
D−(λ)

2D+(λ)

]±1[
1 + c

∞∑
k=1

P
(k)
± (c, L)λ−k

]
. (4.12)

We have explicitly computed the polynomials P
(k)
± (c, L) up to k = 7, but display here only

the first few of them (again, just to give the flavor of the emerging expressions)

P
(1)
± (c, L) = 0, P

(2)
± (c, L) = ±1

4π4
, P

(3)
± (c, L) = ±1

24π6
(6c − 12L + 6 ∓ 1).

(4.13)

The overall factors in (4.12) are related to the ratio of the spectral determinants (2.18) via
(2.20); the expansion

D−(λ)

D+(λ)


√
2

−λπ2
exp

[
1

2λπ2
− L

2(λπ2)2
+

6L(L − 1) − π2 − 1

12(λπ2)3
+ O(L3λ−4)

]
(4.14)

is obtained in a straightforward way once P
(k)
± (c, L) are determined, by imposing the

normalization condition (2.16) order by order in λ−1.
These results are readily applied, through equation (2.17), to write down the large-λ

expansions of the individual spectral determinants

∂λ log D±(λ)  L − 1 + log(4) +
−1 ± 2

8λ
− π2

∞∑
k=2

P
(k)
∓ (0, L)λ−k, (4.15)

where L is the logarithm (4.11), and the terms ∝ λ−2 and higher involve the polynomials
(4.13) specified to c = 0. This equation determines the large-λ expansions of D±(λ) up to an
overall numerical factor

D±(λ)  d±(8π e−2+γE )λ(−λ)λ− 1
8 ± 1

4 exp

[ ∞∑
k=1

F
(k)
± (L)λ−k

]
, (4.16)

8 Here and below the symbol  stands for equality in the sense of asymptotic series.
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where the polynomials F
(k)
± (L) are easily deducible from (4.15), e.g.

F
(1)
± (L) = ∓ 1

4π2
, F

(2)
± (L) = 1 ± 12L

48π4
, etc. (4.17)

One immediate consequence of the asymptotic expansions (4.16) is analytical predictions for
the regularized sum

G(1)
+ ≡

∞∑
m=0

[
1

λ2m

− 1

m + 1

]
, G

(1)
− ≡

∞∑
m=0

[
1

λ2m+1
− 1

m + 1

]
. (4.18)

The form of the pre-exponential factor in (4.16) implies

G(1)
+ = log(8π) − 1, G

(1)
− = log(8π) − 3. (4.19)

The numerical factors d± cannot be obtained from (4.15). In fact, at the moment we do
not have analytic expressions for these constants. However, the exact relation

d−
d+

=
√

2

π
(4.20)

follows from (4.14). Note that the constants d± can be written as (fast convergent) products

d+ = 
(

3
8

)
√

2π

∞∏
m=0

m + 3
8

λ2m

, d− = 
(

7
8

)
√

2π

∞∏
m=0

m + 7
8

λ2m+1
. (4.21)

The relation (4.20) is a rather nontrivial prediction of our theory. Fortunately, the constants
d± play no role in the derivation of the large-λ expansion of the spectrum below.

It is important that the form (4.9) was designed to describe the asymptotic behavior of
Q±(ν|λ) at large negative λ, therefore (4.15) generates the asymptotic expansions of the
spectral determinants at λ → −∞. In view of the analytic structure (2.18), these expansions
are in fact valid at all (sufficiently large) complex λ, except for when λ lies in a narrow sector
around the positive real axis in the complex λ-plane. But since the main object of our interest
is the spectrum {λn}, we are especially interested in the asymptotics of D±(λ) at real positive
λ. Below we argue that the asymptotic behavior in this domain is correctly described as

D±(λ)  D
(+)
± (λ) + D

(−)
± (λ), (4.22)

where D
(+)
± (λ) and D

(−)
± (λ) are the results of term-by-term analytic continuations of the

series (4.16) from the negative to the positive part of the real axis, in the clockwise
and the counterclockwise directions, respectively (formally, D

(+)
± (λ) = D±(−e−iπλ) and

D
(−)
± (λ) = D±(−eiπλ), where D±(λ) are understood as the series (4.16)). Then we can write

the λ → +∞ expansions as

D±(λ)  2d±(8π e−2+γE )λλλ− 1
8 ± 1

4 e�±(λ) cos

[
π

2

(
2λ − 1

4
± 1

2
− �±(λ)

)]
, (4.23)

where �±(λ) and �±(λ) are the asymptotic series of the form

�±(λ) =
∞∑

k=1

�
(k)
± (l)λ−k, �±(λ) =

∞∑
k=2

�
(k)
± (l)λ−k. (4.24)

Here the coefficients �
(k)
± (l) and �

(k)
± (l) are polynomials in the real logarithm

l = log(2πλ) + γE, (4.25)

directly related to the polynomials F
(k)
± (L) in (4.16),

�
(k)
± (l) = 1

2

[
F

(k)
± (l + iπ) + F

(k)
± (l − iπ)

]
,

�
(k)
± (l) = i

π

[
F

(k)
± (l + iπ) − F

(k)
± (l − iπ)

]
.

(4.26)

11
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Of these, �
(k)
± (l) are especially important since they enter the ‘quantization conditions’

2λ − 3

4
−

∞∑
k=2

�(k)
+ (l)λ−k = 2m, (4.27)

2λ − 3

4
−

∞∑
k=2

�
(k)
− (l)λ−k = 2m + 1, (4.28)

which, with m = 0, 1, 2 . . . , determine the eigenvalues λ2m and λ2m+1, respectively. Therefore
we present explicitly �

(k)
± (l) up to k = 7 in appendix A (see equations (A.3) and (A.4)). The

large-n expansion (1.6) follows directly from (4.27), (4.28).
At the moment we do not have completely satisfactory proof of (4.22). However there is

a body of supporting arguments. The most important concerns the behavior of the functions
Q±(ν|λ) themselves at large positive λ. The easiest way to understand the situation is again
through the analytic continuation in λ. The expression (4.9) can be analytically continued
to positive λ term by term in the expansions (4.7) and (4.12). With any such continuation,
it still satisfies the functional equation (2.6) order by order in λ, and its coefficients are still
free of poles in the strip |Im ν| � 2. But there are two natural ways of the continuation—one
is through the upper half-plane, and another is through the lower one. Thus at positive λ we
have two series-like solutions of (2.6), with correct analyticity in the strip |Im ν| � 2, both for
Q+ and Q−. Let us denote them Q

(+)
± (ν|λ) and Q

(−)
± (ν|λ). The problem is that each of them

exhibits unacceptably rapid growth at |Re ν| � 1. It is possible to show that at, say, positive
ν → +∞ they behave as

Q
(+)
± (ν|λ) → eiπ(λ+ 1

8 )R±(−2πλ, λ)|L=l−iπ eπνM̃(ν, 2πλ),

Q
(−)
± (ν|λ) → ±e−iπ(λ+ 1

8 )R±(2πλ, λ)|L=l+iπ eπνM̃(ν, 2πλ).
(4.29)

Here M̃ is a certain combination of the hypergeometric functions M±(ν, 2πλ) (3.4) with
coefficients which, unlike exponential factors e±iπλ, admit large-λ expansion similar to
(4.10). Note that this behavior is completely compatible with the functional equation, but
contradicts the required large-ν behavior of true functions Q±(ν|λ), which must grow slower
then any exponential. Admittedly, we are dealing here with asymptotic series in λ−1, and
using them to judge the ν → ∞ asymptotics is problematic. But the series in (4.7) is
expected to be approximative at large λ as long as

√
λ � ν (and even more so for the

series (4.10)). If one focuses on the region
√

λ � ν � 1, the exponential growth (4.29)
is clearly incompatible with the expected behavior of true functions Q±(ν|λ), which at
ν � 1 must quickly (with exponential accuracy) become linear combinations of the functions
M+(ν, 2πλ) and M−(ν, 2πλ) defined in (3.4). However, it is clear from (4.29) that one can
form special linear combinations of Q(+) and Q(−) in which the growing terms cancel out.
These combinations involve the factors eiπλ and e−iπλ which do not admit λ−1 expansions; this
is why straightforward λ−1 expansions are impossible at positive λ. The most compact way to
describe these linear combinations is in terms of somewhat differently normalized functions

Q±(ν|λ) = 2±1i
±1−1

2 D±(λ)Q±(ν|λ); (4.30)

instead of (2.16) they satisfy

Q+(2i|λ) = 2D+(λ), Q−(0|λ) = 1

2i
D−(λ). (4.31)

The normalization factors in (4.30) make Q±(ν|λ) entire functions of λ. In particular, instead
of (2.12), at the spectral values of λ we simply have

	2m(ν) ∝ Q+(ν|λ2m)

ν cosh
(

πν
2

) , 	2m+1(ν) ∝ Q−(ν|λ2m+1)

ν cosh
(

πν
2

) . (4.32)
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At negative λ (indeed, at all complex λ except for the narrow sector around the positive real
axis), the large-λ expansion can still be written in the form (4.9), with the coefficients R±(z, λ)

replaced by

R±(z, λ) = d∓(8π e−2+γE )λ(−λ)λ− 5
8 ∓ 1

4

[
1 +

∞∑
k=1

R(k)
± (c, L)λ−k

]
, (4.33)

with new polynomials R±(c, L) which are obtained by combining (4.12) with (4.16). Now,
let Q(+)

± (ν|λ) and Q(−)
± (ν|λ) be two asymptotic expansions obtained by formal term-by-term

analytic continuation in λ from negative to positive λ, one through the upper half-plane and
another through the lower one. It turns out that it is exactly the sums Q(+)

± + Q(−)
± in which

the unacceptable growing terms (4.29) cancel out. Thus it is natural to assume that correct
asymptotic behavior of true functions Q±(ν|λ) at real positive λ is given by these sums9,

Q±(ν|λ)  Q(+)
± (ν|λ) + Q(−)

± (ν|λ), λ → +∞. (4.34)

From this, the form (4.22) immediately follows. We note here that after the cancellation of
the growing terms, the combinations (4.34) have the following behavior at real |ν| � 1:

Q+(ν, λ) ∼ M+(|ν|, 2πλ), Q−(ν, λ) ∼sgn(ν)M+(|ν|, 2πλ). (4.35)

It turns out that these equations give very good approximations of the functions even at ν ∼ 1,
and even if λ is not particularly large (see the following section).

Another piece of evidence supporting (4.22) is numerical. First, the numerical values of
λ2m and λ2m+1 obtained from (4.27) and (4.28), with some reasonable number of terms in the
λ−1 expansions included, provide remarkably accurate estimates for the eigenvalues, even for
low levels. We discuss these numerics in the following section. But one can also match the
large-λ expansions of the spectral determinants to the power series expansions

D±(λ) = 1 + (1 ∓ 1)λ +
∞∑

s=2

D
(s)
± λs. (4.36)

The latter converge in the whole λ plane. With many terms included, the expansions (4.36)
are expected to approximate the functions D±(λ) well even if |λ| is not small. Since we
know as many as 13 terms of (4.36), one expects to have a substantial domain at negative
λ where the truncated series (4.36) match the asymptotic expansions (4.16) (again, with a
reasonable number of terms in the sum). More crucially, if (4.22) is correct, there must be a
substantial domain of positive λ where it matches (4.22). This comparison requires knowing
the constants d± in equations (4.16), (4.22). We use here the numerical estimates from the
following section (see equation (5.1)). In figures 1 and 2 we present simultaneous plots of
the λ expansions (4.36), with as many terms as are available, and the large-λ expansions
(4.16) and (4.23), with the sums including all terms up to ∝ λ−6. In fact, the plots are for
e−2.5λD±(λ), with the exponential factor added to make the interesting parts of all three plots
visible in the same picture (D±(λ) themselves develop large amplitudes already at λ ∼ 1). As
expected, there is a good match at negative λ between −1 and −0.4, but one can also see a
clear match at positive λ, in the domain between 0.6 and 1.6 where the functions already show
‘live’ behavior. Note that the two lowest zeros of both D+ and D− are already visible at these
orders of the λ-expansions. In fact, the positions of the lowest zeros λ0 and λ1 stabilize rather
fast as one adds more and more terms to (4.36). This convergence is particularly impressive
for λ0. Padé approximation of the λ-expansion of the ratio D+(λ)

D−(λ)
, equation (2.20), yields the

9 The situation is reminiscent to how the WKB expansions of the wavefunctions in quantum mechanics are matched
around the turning points.
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Figure 1. Plots of small- and large-λ expansions of e−2.5λD+. The λ-expansion, with terms up to
∝ λ14 in (4.36), is shown as the dashed line. The solid lines represent the large-λ expansions, i.e.
(4.16) at negative λ, and (4.23) at positive λ; in both cases terms up to ∝ λ−6 are included.

following estimate of the lowest eigenvalue:

2λ0 = 0.737 061 746 292 690. (4.37)

Compare this number to the numerical result in table 1.

5. Numerical results

As was mentioned, it is not difficult to compute eigenvalues {λn} by direct numerical solution
of equation (1.1). A variety of numerical methods exists [1–5]. We have used the expansion
of ϕ(x) in Chebyshev polynomials from [2, 4], which seems particularly suitable in the
case (1.5) since it automatically guarantees the function ϕ(x) correct behavior near the
boundaries x = 0, 1 (besides, its implementation requires perhaps the least amount of
creative programming). With this method, fourteen significant digits for as many as 50
lowest eigenvalues λn can be obtained by truncating to matrices of the size 400 × 400. Below
we use the notation λ(num)

n for these numerical estimates.
In tables 1 and 2 we compare these numbers, for even and odd n separately, with the

results of large-λ expansions. The first column in each of these tables shows numerical values
yielded by equation (1.6), with all terms explicitly written there included. One can observe
significant improvement as compared to the leading semiclassical approximation λn ≈ n + 3

4 ,
even for the low levels such as λ1 and λ2. The approximation (1.6) corresponds to truncating
the sums in equations (4.27) and (4.28) to terms ∼ λ−3, but one can obtain further corrections
by including higher order terms. We denote λ(k)

n the estimates from equations (4.27), (4.28)
with terms up to ∝ λ−k included, and present the numerical values of λ(7)

n (together with the
deviations δλ(7)

n = λ(7)
n − λ(6)

n to show the expected accuracy of this approximation). Since
we are dealing with an asymptotic expansion, one does not expect it to work well for low
levels, but tables 1 and 2 show that including these further corrections results in noticeable
improvement even for levels as low as λ3 and λ4, and for higher levels the improvement
becomes impressive. For n � 30 λ(7)

n are indistinguishable from λ(num)
n within the accuracy of

the latter.
Another impressive agreement is in terms of the sum rules (1.7), (4.18). One can evaluate

the spectral sums in (1.7), (4.18) using the numerical values λ(num)
n , and compare these
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Figure 2. Same as in figure 1, but for e−2.5λD−. In this case the small-λ expansion is truncated to
terms ∝ λ13.

Table 1. Numerical values of the even eigenvalues 2λn from the large-λ expansion. The first column
gives simply the numerical values of (1.6), with all higher corrections ignored. 2λ

(7)
n are obtained

from (4.27) with the sum truncated beyond the term ∝ λ−7. The differences 2δλ
(7)
n = 2λ

(7)
n −2λ

(6)
n

are given in the third column, they show the effect of the term ∝ λ−7. In the last column we present
the eigenvalues 2λ

(num)
n computed by the direct numerical solution of (1.1).

n 2λn from equation (1.6) 2λ(7)
n 2δλ(7)

n 2λ(num)
n

0 0.730 — — 0.737 061 746 292 69
2 2.748 145 2.748 159 6.3 × 10−5 2.748 160 912 3706
4 4.749 299 4.749 2955 1.8 × 10−6 4.749 295 381 0375
6 6.749 631 6.749 629 43 1.7 × 10−7 6.749 629 419 6488
8 8.749 7729 8.749 771 584 2.9 × 10−8 8.749 771 580 7892

10 10.749 8458 10.749 845 0900 6.7 × 10−9 10.749 845 089 160
12 12.749 8885 12.749 888 0086 2.0 × 10−9 12.749 888 008 416
14 14.749 9156 14.749 915 244 53 6.9 × 10−10 14.749 915 244 446
16 16.749 9338 16.749 933 611 09 2.7 × 10−10 16.749 933 611 057
18 18.749 946 73 18.749 946 584 05 1.2 × 10−10 18.749 946 584 034
20 20.749 956 19 20.749 956 088 181 5.4 × 10−11 20.749 956 088 173
22 22.749 963 34 22.749 963 259 765 2.7 × 10−11 22.749 963 259 761
24 24.749 968 86 24.749 968 804 885 1.4 × 10−11 24.749 968 804 883
26 26.749 973 23 26.749 973 181 147 7.5 × 10−12 26.749 973 181 145
28 28.749 976 73 28.749 976 695 732 4.2 × 10−12 28.749 976 695 731

numerical estimates
[
G

(s)
±

](num)
with the analytic predictions (1.8), (4.19) and (A.1), (A.2).

In fact, for low s the sums do not converge that fast. For instance, to estimate
[
G

(2)
±

](num)
to

fourteen digits one needs to include as many as 107 eigenvalues. Of course, this problem is
easy to solve since we have very good large-n asymptotic approximations. In the sums (1.7),
starting from some sufficiently large n one simply replaces λ(num)

n by the asymptotic form, say
λ(7)

n . In table 3 we show numerical estimates obtained in this way for s = 1, 2, . . . , 8. It is
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Table 2. The same as in table 1, but for the odd eigenvalues 2λn.

n 2λn from equation (1.6) 2λ(7)
n 2δλ(7)

n 2λ(num)
n

1 1.753 81 1.753 96 −9.3 × 10−4 1.753 731 336 9175
3 3.751 045 3.751 0570 −8.6 × 10−6 3.751 057 581 7054
5 5.750 487 5.750 492 57 −5.0 × 10−7 5.750 492 623 6487
7 7.750 2819 7.750 284 389 −6.4 × 10−8 7.750 284 397 1925
9 9.750 1838 9.750 185 133 −1.3 × 10−8 9.750 185 135 2539

11 11.750 1294 11.750 130 1421 −3.4 × 10−9 11.750 130 142 515
13 13.750 0960 13.750 096 5038 −1.1 × 10−9 13.750 096 503 972
15 15.750 0741 15.750 074 428 38 −4.0 × 10−10 15.750 074 428 438
17 17.750 0589 17.750 059 159 01 −1.6 × 10−10 17.750 059 159 035
19 19.750 048 00 19.750 048 157 159 −7.2 × 10−11 19.750 048 157 169
21 21.750 039 85 21.750 039 967 124 −3.4 × 10−11 21.750 039 967 130
23 23.750 033 62 23.750 033 705 315 −1.7 × 10−11 23.750 033 705 317
25 25.750 028 74 25.750 028 810 058 −9.0 × 10−12 25.750 028 810 060
27 27.750 024 86 27.750 024 910 393 −4.9 × 10−12 27.750 024 910 394
29 29.750 021 71 29.750 021 753 287 −2.7 × 10−12 29.750 021 753 287

Table 3. Numerical values of the spectral sums (1.7), (4.18).

s [G(s)
+ ](num) [G(s)

− ](num)

1 2.224 171 427 529 23 0.224 171 427 5292
2 8.414 398 322 1171 2.000 000 000 0000
3 20.498 120 753 6828 1.719 824 178 2619
4 54.538 349 992 708 1.795 248 037 7615
5 147.326 803 732 14 1.978 988 942 9098
6 399.323 976 537 15 2.225 050 774 8184
7 1083.246 407 5913 2.521 777 906 136
8 2939.143 391 8727 2.867 885 373 267

an easy and pleasant exercise to check that these numbers agree with the analytic expressions
(1.8), (4.19) and (A.1), (A.2) to all digits presented. As was mentioned, we actually have
analytic expressions for G

(s)
± with s up to 13, and we have verified similar agreement for these

higher values of s as well. We also have computed the products (4.21) with the numerical
spectrum

d(num)
+ = 0.963 178 456 398, d

(num)
− = 0.433 582 639 833. (5.1)

Again, it is easy to check that these numbers comply with (4.20) to twelve digits.
The above numerics concern the eigenvalues {λn}. But it is also interesting to see how

the large-λ expansions in section 4 approximate the associated eigenfunctions 	n(ν). It turns
out that (4.9) provides a rather good approximation even if one retains only the leading term
1 in the expansion (4.10) of the coefficients R±(z, λ). In this approximation the sum in
(4.7) is understood as the hypergeometric function (−iz)1+ iν

2 U
(
1 + iν

2 , 2,−iz
)
. This results in

the following approximate expression for the normalized eigenfunctions (which we write for

16
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Figure 3. Comparison of the approximation (5.2) for even eigenfuctions 	n(ν) with n = 0, 2, 4
(solid lines) with the results of direct numerical solution of (2.2) (bullets).

ν > 0; the ν < 0 part is restored by symmetry):

	n(ν) ≈
√

8πλn sinh2
(

πν
2

)
cosh

(
πν
2

)√
1 + e−πν

Re

[
in e−i�(ν)

(
iν

2

)
U

(
1 +

iν

2
, 2,−2iπλn tanh

(
πν

2

))]
.

(5.2)

Here the phase �(ν) has the expression

�(ν) = sgn(ν)

[
π

8
− 1

4π
e−π |ν|�

(
e−2π |ν|, 2,

1

2

)]
, (5.3)

in terms of the Lerch transcendent �(z, s, a) = ∑∞
k=0

zk

(k+a)s
. The approximation is not

expected to be very accurate at small ν, because (5.2) has a term with singularity ∼ ν log ν at
ν = 0, while true eigenfunctions 	n(ν) are analytic at all real ν (recall that the higher order
terms in (4.10) were designed precisely to fix this analytic deficiency). However, numerically
the deviations of (5.2) from true eigenfunctions are rather small even at small ν. Figures 3, 4
show plots of (5.2) for low n against the corresponding eigenfunctions obtained by numerical
solution of (2.2). Deviation at small ν is barely visible only for n = 0.

6. Remarks

As was mentioned in the introduction, the techniques developed here extend to the case (1.9).
While we plan to treat this case in a separate paper, let us announce here some preliminary
results. The large-λ expansion generalizes in an almost straightforward way, yielding the
asymptotic large-n expansion of λn(α). The large-n behavior follows from the ‘quantization
condition’, generalizing (4.27), (4.28) in section 4,

2λ − 2α

π2
log(2λ) − C0(α) +

α2

π4λ
+

1

2π6λ2
[α3 + (−1)nπ2(1 + α)]

+
1

12π8λ3
[5α4 + π2(1 + α)2 − (−1)n12π2(1 + α)(log(2π eγE λ) − C1(α))]

+ O(λ−4 log2(λ)) = n, (6.1)
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Figure 4. Comparison of the approximation (5.2) for odd eigenfuctions 	n(ν) with n = 1, 3, 5
(solid lines) with the results of direct numerical solution of (2.2) (bullets).

where

C0(α) = 3

4
+

2α

π2
log(4π eγE ) − α2

2π2

∫ ∞

−∞
dt

sinh(t)(sinh(2t) − 2t)

t cosh2(t)
(
α sinh(t) + t cosh(t)

) ,

C1(α) = 1

2
+

3α

2
+

α

8

∫ ∞

−∞
dt

sinh(2t) − 2t

t sinh(t)(α sinh(t) + t cosh(t))
.

(6.2)

The first two terms in (6.1) have been known since [1]. An explicit expression for the constant
term C0(α), equation (6.2), was previously obtained in [11] (see also [12]). We believe
the higher order terms in the expansion in (6.1) are new. Further terms can be derived in a
systematic way. Another result compact enough to be presented here is the analytic expression
of the spectral sums (4.19)10,

G
(1)
± (α) = log(8π) − 2 ± 1 − α

4

∫ ∞

−∞
dt

sinh(t)(sinh(2t) ± 2t)

t cosh2(t)(α sinh(t) + t cosh(t))
. (6.3)

These and other results indicate the rich analytic structure of λn(α) as functions of complex
α. First, as expected, λn(α) have a square-root branching point α = −1, which corresponds
to the limit m1 = m2 = 0, where the chiral symmetry becomes exact. In particular, the
lowest eigenvalue λ0(α) turns to zero as

√
α + 1. But in addition, there are infinitely many

similar square-root branching points located on the second sheet of the α-plane (i.e. in the left
half-plane of the variable

√
α + 1), accumulating towards α = ∞. At each of these points one

of the even eigenvalues λ2m(α) turns to zero. It is difficult to imagine that if one takes QCD2

with large but finite Nc these singularities just disappear. It is more likely that they become
nontrivial critical points of some sort. What is the physics of these critical points? Can one
identify associated (nonunitary) CFT? These are some of the intriguing questions which we
plan to study in the future.
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Appendix A

A.1

Analytic expressions for the spectral sums (1.7) with s = 2, 3, 4 are given in (1.8). Here we
present a few more expressions for G

(s)
± , with s up to 8

G(5)
+ = 2

135
[16π4 − 50π2(2 + 21ζ(3)) + 105(20ζ(3) + 105ζ 2(3) + 31ζ(5))]

G(6)
+ = 1

4320
[π4(4090 + 1449ζ(3)) − 20π2(140 + 9912ζ(3) + 2646ζ(3)2 + 837ζ(5))

+ 15(138 768ζ 2(3) + 24 696ζ 3(3) + 16 120ζ(5) + 28ζ(3)(140 + 837ζ(5)) + 3429ζ(7))]

G(7)
+ = 1

567 000
[−12 288π6 + 49π4(21 002 + 45 969ζ(3)) − 2940π2(36 + 15 400ζ(3)

+ 22 050ζ 2(3) + 4495ζ(5)) + 315(1509 200ζ 2(3) + 1440 600ζ 3(3) + 60 760ζ(5)

+ 196ζ(3)(36 + 4495ζ(5)) + 51 689ζ(7))]

G(8)
+ = 1

1944 000
[−4π6(97 286 + 12 375ζ(3)) + π4(4210 624 + 38551 128ζ(3)

+ 5622 750ζ 2(3) + 767 250ζ(5)) − 30π2(2464 + 32 104 800ζ 2(3) + 3704 400ζ 3(3)

+ 4032 480ζ(5) + 8400ζ(3)(712 + 279ζ(5)) + 142 875ζ(7)) + 315(21 403 200ζ 3(3)

+ 1852 200ζ 4(3) + 76 880ζ(5) + 432 450ζ 2(5) + 8400ζ 2(3)(712 + 279ζ(5))

+ 167 132ζ(7) + ζ(3)(4928 + 8064 960ζ(5) + 285 750ζ(7)) + 27 375ζ(9))] (A.1)

G
(5)
− = 1

225
[−32π4 + 50π2(6 + 7ζ(3)) − 15(76 + 155ζ(5))]

G
(6)
− = 1

97 200
[681 120 − 214 800π2 + 14 426π4 + 201 600π2ζ(3) − 21 735π4ζ(3)

− 1339 200ζ(5) + 251 100π2ζ(5) − 771 525ζ(7)]

G
(7)
− = 1

1190 700
[−11 541 600 + 4245 360π2 − 519 302π4 + 18 432π6 + 21 609π4ζ(3)

+ 1367 100π2ζ(5) − 10 921 365ζ(7)]

G
(8)
− = 1

76 204 800
[1021 799 520 − 429 522 240π2 + 60 393 480π4 − 2819 800π6

+ 110 308 800π2ζ(3) − 34 223 168π4ζ(3) + 1455 300π6ζ(3) + 25 930 800π4ζ 2(3)

− 732 765 600ζ(5) + 346 332 000π2ζ(5) − 22 557 150π4ζ(5)

− 344 509 200π2ζ(3)ζ(5) + 1144 262 700ζ 2(5) − 860 267 520ζ(7)

+ 126 015 750π2ζ(7) − 253 519 875ζ(9)]. (A.2)

Expressions for G
(s)
± with even higher s (we have them all the way up to s = 13) have similar

structure, but are too cumbersome to fit in a reasonable page space.
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A.2

Coefficients �
(k)
± (l) in equations (4.27), (4.28) for k � 7

�(2)
+ (l) = − 1

2π4

�(3)
+ (l) = 12l − 7

12π6

�(4)
+ (l) = 1

16π8
[16π2 − 5 + 44l − 24l2]

�(5)
+ (l) = 1

12π10
[3 + 76π2 + 12ζ(3) + (48 − 60π2)l − 84l2 + 24l3]

�(6)
+ (l) = 1

144π12
[111 + 2965π2 − 828π4 + 948ζ(3) + (396 − 6228π2 − 720ζ(3))l

+ (2160π2 − 2448)l2 + 1968l3 − 360l4]

�(7)
+ (l) = 1

960π14
[870 + 40 865π2 − 79 264π4 + 21 560ζ(3) − 16 800π2ζ(3) + 4320ζ(5)

− (1800 + 181 680π2 − 47 040π4 + 42 720ζ(3))l + (160 320π2 − 24240

+ 14 400ζ(3))l2 + (45 760 − 33 600π2)l3 − 22 080l4 + 2880l5] (A.3)

�
(2)
− (l) = 1

2π4

�
(3)
− (l) = 5 − 12l

12π6

�
(4)
− (l) = 1

16π8
[3 − 16π2 − 36l + 24l2]

�
(5)
− (l) = 1

12π10
[−3 − 70π2 − 12ζ(3) + (60π2 − 36)l + 72l2 − 24l3]

�
(6)
− (l) = 1

144π12
[828π4 − 87 − 2633π2 − 900ζ(3) + (5820π2 − 252 + 720ζ(3))l

+ (1944 − 2160π2)l2 − 1728l3 + 360l4]

�
(7)
− (l) = 1

960π14
[76 864π4 − 630 − 35 355π2 − 19 800ζ(3) + 16 800π2ζ(3) − 4320ζ(5)

+ (1800 + 163 920π2 − 47 040π4 + 40 800ζ(3))l + (18 000 − 151 200π2

− 14 400ζ(3))l2 + (33 600π2 − 37 440)l3 + 19 680l4 − 2880l5]. (A.4)

Appendix B

Here we describe some technical details of our analysis of the integral equation (2.8) with the
rhs (2.11). To make the equations shorter, throughout this appendix we trade the variable ν

for

t ≡ πν

2
, (B.1)

but, with some abuse of notation, retain the same symbols for basic functions. Thus 	±(t |λ)

will stand for solutions of the integral equations
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f (t)	+(t |λ) − t

sinh(t)
= λ

∫ ∞

−∞
dt ′S(t − t ′)	+(t

′|λ)

f (t)	−(t |λ) − π

2 sinh(t)
= λ −

∫ ∞

−∞
dt ′S(t − t ′)	−(t ′|λ),

(B.2)

with the kernel

S(t) = t

sinh(t)
. (B.3)

The analysis below does not depend on a specific form of the function f (t). With
f (t) = t coth(t), equations (B.2) are equivalent to (2.8), (2.11), but almost all statements
below remain valid if one takes the more general form

f (t) = α + t coth(t), (B.4)

which appears in analysis of (1.1) with nonzero but equal α1 = α2 = α.
Equation (B.2) defines the spectral problem

K̂φ(t) = λ−1φ(t) (B.5)

for the Fredholm operator

K̂φ(t) ≡
∫ ∞

−∞
dt ′K(t, t ′)φ(t ′) (B.6)

with the kernel

K(t, t ′) = S(t − t ′)√
f (t)f (t ′)

, (B.7)

where φ = √
f 	. Let R(t, t ′|λ) be the corresponding resolvent, i.e. the kernel of the operator

K̂

1−λK̂
. By definition, it satisfies the equation

R(t, t ′|λ) − λ

∫ ∞

−∞
dτK(t, τ )R(τ, t ′|λ) = K(t, t ′). (B.8)

The spectral sums (1.7) and (4.18) are related to the resolvent by the trace identities

∞∑
s=1

[
G(s)

+ + G
(s)
−

]
λs−1 = C +

∫ ∞

−∞
dt[R(t, t |λ) − R(0)(t)] (B.9)

∞∑
s=1

[
G(s)

+ − G
(s)
−

]
λs−1 =

∫ ∞

−∞
dtR(t,−t |λ). (B.10)

The constant C in (B.9) depends on the choice of the subtraction term R(0)(t) needed to make
the integral convergent. We take

R(0)(t) = tanh(t)

t
. (B.11)

With this choice the constant can be shown to be exactly

C = 2 log(8π) − 4. (B.12)

It is the remarkable property of the kernel (B.3) in (B.2) that the resolvent can be expressed
in a simple way through the functions 	+(t |λ) and 	−(t |λ), namely11

R(t, t ′|λ) = 2 sinh(t) sinh(t ′)
π sinh(t ′ − t)

√
f (t)f (t ′)[	+(t

′|λ)	−(t |λ) − 	−(t ′|λ)	+(t |λ)]. (B.13)

11 In other words, the kernel (B.7) belongs to the class of ‘integrable’ kernels, see [15] for other kernels with similar
properties.
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To prove this identity, consider the Liouville–Neumann series for 	±(t |λ),

f (t)	+(t |λ) =
∞∑

k=0

λk

∫ ∞

−∞

tk

sinh(tk)

k∏
j=1

dtj

f (tj )
S(tj − tj−1)

f (t)	−(t |λ) = π

2

∞∑
k=0

λk −
∫ ∞

−∞

1

sinh(tk)

k∏
j=1

dtj

f (tj )
S(tj − tj−1),

(B.14)

where t0 ≡ t . Then we have

2

π
f (t)f (t ′)[	+(t

′|λ)	−(t |λ) − 	−(t ′|λ)	+(t |λ)] =
∑
k,m

λk+m −
∫ ∞

−∞

sinh(t ′k − tm)

sinh(t ′k) sinh(tm)

× S(t ′k − tm)

k∏
j=1

dt ′j
f (t ′j )

S(t ′j − t ′j−1)

m∏
i=1

dti

f (ti)
S(ti − ti−1), (B.15)

where again t0 = t and t ′0 = t ′. Let us introduce uniform notations for the integration variables

(t1, . . . , tm; t ′k, . . . , t
′
1) = (τ1, . . . , τm, τm+1, . . . , τk+m). (B.16)

The elementary identity
l∑

m=0

sinh(τm+1 − τm)

sinh(τm+1) sinh(τm)
= sinh(τl+1 − τ0)

sin(τl+1) sinh(τ0)
(B.17)

allows one to put (B.15) in compact form

2 sinh(t) sinh(t ′)
π sinh(t ′ − t)

f (t)f (t ′)[	+(t
′|λ)	−(t |λ) − 	−(t ′|λ)	+(t |λ)]

=
∞∑
l=1

λl

∫ ∞

−∞

l∏
j=1

dτj

f (τj )

l+1∏
j=1

S(τj − τj−1), (B.18)

where now τ0 ≡ t, τl+1 = t ′. It is easy to see that the right-hand side here divided
by

√
f (t)f (t ′) is exactly the Liouville–Neumann series for the solution of the integral

equation (B.8).
Now, since

D±(λ) =
(

8π

e

)λ

exp

[
−

∞∑
s=1

s−1G
(s)
± λs

]
, (B.19)

combining equations (B.9), (B.10) and (B.13) leads to the following expressions for the
logarithmic derivatives of the spectral determinants:

∂λ log(D+D−) = 2 −
∫ ∞

−∞
dt

{
π

2f (t)
[Q−(t |λ)∂tQ+(t |λ) − Q+(t |λ)∂tQ−(t |λ)] − tanh(t)

t

}

∂λ log

(
D+

D−

)
= −

∫ ∞

−∞

dt

f (t)

πQ+(t |λ)Q−(t |λ)

sinh(2t)
, (B.20)

where

Q±(t |λ) = 2

π
sinh(t)f (t)	±(t |λ). (B.21)

The above analysis, in particular equation (8.20), applies to (B.2) with generic f (t). If
one takes f (t) of the special form t coth(t), it is very likely that (B.20) further reduce to the
simple form (2.17). Note that (2.17) corresponds to replacing the integrals in (B.20), (8.20) by
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one half of the residues of the integrands at the pole at t = iπ
2 . Unfortunately, so far we could

not find a way to reduce the integrals to the residues, and thus (2.17) lacks rigorous proof. But
it passes a number of nontrivial tests, both analytic and numerical. Thus, all G(s)

± listed in (1.8)
come out identical by direct evaluation of the integrals from (B.20). For higher s, using (2.17)
instead of (B.20) dramatically simplifies the calculations, and all analytic expressions for G

(s)
±

listed in appendix A and beyond in fact depend on the validity of (2.17). We take agreement
with the numerical data in table 3 as further support of (2.17). On the other hand, although in
deriving the large-λ expansion of the spectrum in section 4 we have used (2.17), it is possible
to show that the results for the coefficients �

(k)
± (l) in (4.27), (4.28) are independent of the

validity of this relation. In particular, all the expressions for these coefficients in appendix A
can be re-derived by a different (somewhat more complicated) method which does not rely
on (2.17). Let us also stress that the simplification (2.17) depends on the special choice
f (t) = t coth(t) in (B.2). It is unlikely that any simple modification of (2.17) exists for
more general f (t), say of the form (B.4). Therefore, in the analysis of the problem (1.1)
in the more interesting case of a generic α (which we plan to present in a separate paper),
we have to make do with the integral representation (B.20).
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